If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3h^2+48h-4.756=0
a = 3; b = 48; c = -4.756;
Δ = b2-4ac
Δ = 482-4·3·(-4.756)
Δ = 2361.072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-\sqrt{2361.072}}{2*3}=\frac{-48-\sqrt{2361.072}}{6} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+\sqrt{2361.072}}{2*3}=\frac{-48+\sqrt{2361.072}}{6} $
| 14x-5=710x | | x+2/3=4x-8 | | 3+5r=43 | | 21-1/5x=-1/5x+21 | | 17*(x-56)=(10*x)-63 | | 8-4g=36 | | 7x^2-13=99 | | 7x+3+4x+1=115 | | 2x+90+(x+10.5)=180 | | 0.2x+1=0.3x | | 15x-10=2x+3 | | 29-(-10*x)=-18*(x+9) | | 150=5(x-55)+75 | | 24.1=d=4.9^2 | | 7n+12=1/2(14n+24)| | | 17-(6*x)=47+(10*x) | | -13(x+20)=-11*(x+38) | | 25+(4y-15-10)=180 | | 2x-6(x-5)=2x+4(x-20) | | 2(4x-2)=3(3x+12) | | (3x-20)+(47-x-10)=180 | | 2(4x-2)=3(3x+12 | | 125m-75m+43650=45450-175m | | -9x=1/3 | | -7(y-2)=-4y+17 | | 5-n=4n-5 | | (x-1)(2x-10)=0 | | 6w+21=3(w+5) | | 6(8-1)=3x-2 | | 4x+25=x+5 | | 3/10i+4=13 | | 4(y-5)-6y=-4 |